

October 6, 2021

Peter Blumanthal, PE Westech Engineering, Inc. 3841 Fairview Industrial Drive, SE, Suite 100 Salem, OR 97302 <u>pblumanthal@westech-eng.com</u>

Re: City of Jefferson (PWS ID#00408) Water Treatment Plant (PR#138-2019) SRF Project # SD-16-155 Final Approval – PR# 126-2021

Dear Mr. Blumenthal:

Thank you for your submittal to the Oregon Health Authority's Drinking Water Services (DWS) of plan review information for the new membrane treatment plant for the City of Jefferson. Based on the submittal and the *Plant Commissioning Summary* letter received on October 1, 2021, the conditions in the November 5, 2019 conditional approval letter have been met and the project is granted Final Approval and the facilities may now be placed into service. It is understood that the City will work with Chantal Wikstrom to complete a tracer study on the new baffled clearwell as soon as possible and complete two 6-month demonstration rounds of 40 lead and copper tap samples to be completed by June 30, 2022.

This phase of the membrane treatment plant has a 2 MGD capacity and will utilize gas chlorine for disinfection. Future expansions of the membrane plant will increase the capacity to 4 MGD (then 6 MGD) and will utilize UV for disinfection. **The future membrane expansion will need to be submitted for plan review prior to installation.**

The membrane treatment plant is granted 4-log removal of *Giardia* and 4-log removal of *Cryptosporidium*. These log removals correspond with a 35-psi maximum transmembrane pressure (TMP), 120-gpd/ft² maximum flux rate, and by demonstrating through direct integrity testing an LRV \geq 4.0-log and pressure decay rate \leq 0.06 psi/min (0.3 psi over the 5-minute integrity test hold time). 4-log inactivation of viruses and 0.5-log inactivation of *Giardia* is to be achieved post-filtration with gas chlorine up to 2 MGD (1,389 gpm). The UV is credited w/3.5-log *Giardia/Cryptosporidium* inactivation @ 4,500 gpm (6.48 MGD) max flow through each reactor and is needed for *Giardia* inactivation for future plant flows over 2 MGD.

800 NE Oregon Street, #640 Portland, OR 97232-2162 Phone: 971-673-0191 Fax: 971-673-0694 www.healthoregon.org/DWP Page 2 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

In summary, the project included the installation of a new:

- 1) raw water pump station,
- membrane treatment plant (Pall UNA-620A, two 8-inch transverse racks (1 MGD ea.) with 62 ultrafiltration (0.1 μm nominal pore size) pressurized modules per rack);
- 3) below ground, concrete baffled clearwell (81,290 gallons w/ 35.1 minutes of contact time estimated using a 60% baffling factor and peak hour demand flow of 1,389 gpm);
- 4) chemical treatment including aluminum chlorohydrate (ACH) for pretreatment and soda ash for corrosion control;
- 5) gas chlorine and UV for disinfection (Two Trojan UVSwift[™] 2L12 reactors); and
- 6) a new finished water pump station and associated piping and appurtenances.

Note that until a tracer study is complete, **the water system should use an estimated time (T) of 35.1 minutes for the clearwell when calculating daily CT values**. Note that the 2 MGD limit for disinfection applies to peak hour demand flow out of the clearwell and not plant production capacity, unless the flow going into the clearwell equals the flow going out of the clearwell (creating a constant level in the clearwell that doesn't drop with demand).

DWS understands that the City will utilize the Trojan UV units for additional disinfection until the tracer study is complete, but the City is not looking for inactivation credit at this time. The City will need to use the surface water treatment form for membrane treatment plants for monthly reporting, located at this link:

https://www.oregon.gov/oha/PH/HEALTHYENVIRONMENTS/DRINKINGWATER/MONIT ORING/Documents/turb-alt-unfiltered.pdf

The remainder of this letter includes:

- 1) <u>Table 1</u> <u>Log removal credits</u> (LRC) granted for the PALL UNA-620A membrane plant
- 2) <u>Table 2</u> <u>Operating limits</u> that help ensure that the log removal credits granted are met.
- 3) <u>Appendix A</u> <u>Explanation of operating limits</u> and terms in Table 2.
- 4) <u>Appendix B</u> <u>Formulae and variables</u> used in calculating the log removal value (LRV_{ambient}) of each membrane filter unit using current ambient operating conditions.
- 5) <u>Appendix C</u> <u>Product specifications</u> for the UNA-620A membrane modules.

Page 3 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

- 6) <u>Appendix D</u> Specifications related to the Trojan UV-Swift[™] 2L12 UV unit.
- 7) <u>Appendix E</u> Contact time estimates for the baffled clearwell.

Thank you for your cooperation during this process and if you have any questions on the information above, or would like this information in an alternate format, please contact me at 971-201-9794 or via e-mail at <u>carrie.l.gentry@dhsoha.state.or.us</u>.

Sincerely,

Carrie Gentry, PE Regional Engineer Oregon Health Authority - Drinking Water Services

ec: Jeff Buskirk, City of Jefferson - <u>jeffersonpwd@peak.org</u> Chantal Wikstrom, OHA/DWS - <u>Chantal.T.Wikstrom@dhsoha.state.or.us</u> Michelle Bilberry, Business Oregon - <u>michelle.bilberry@oregon.gov</u>

Pathogen	Removal Credit (log ₁₀)
Giardia lamblia	4.0
Cryptosporidium sp.	4.0
Viruses	0.0

Table 1 – Filter Log Removal Credit (LRC) – PALL (Asahi Kasei UNA-620A membrane modules

The LRCs above are only valid provided operations are within the limits shown in Table 2. Ensure SCADA/PLC programming accounts for the operating limits in Table 2 (e.g., set system alarms to ensure operating limits are met).

I able 4	2 – Operating Limits		
Operating Parameter	Limit		
Direct integrity test (DIT) frequency	Conduct at least 1 DIT each day of operation		
DIT duration/hold time	5 min/300 sec		
DIT starting test pressure	25 psi		
Minimum allowed DIT pressure	17.47 psi (It is understood that programming will trigger a		
	failure if the DIT pressure drops below 25 psi)		
Maximum allowable pressure decay rate (PDR)	UCL = 0.14 psi/min		
upper control limit (UCL)	(It is understood that programming will use a UCL = $0.06 ^{\text{psi}}/\text{min}$		
	= 0.3 psi / 5-minute test duration)		
Minimum DIT pressure transducer accuracy for	+/- 0.113 psi (+/- 0.075% of span (0-150 psi))		
the established UCL ¹			
Membrane Minimum Performance (LRV _{ambient}) ²	LRV _{ambient} = 4.0-log (LRV must be <u>></u> 4.0-log LRC)		
DIT Sensitivity (LRV _{DIT})	4.012-log @ 0.14 psi/min (4.38-log @ 0.06 psi/min)		
Maximum transmembrane pressure (TMP)	35 psi at 20°C		
Maximum allowed filtrate flux [gfd]	120 gal/SqFt/day @ 20°C (it is understood that programming		
	will limit flux to 35.8 ^{gal/SqFt} / _{day}		
Individual filter effluent (IFE) turbidity	IFE \leq 0.15 NTU for \geq 15 consecutive minutes		
Combined filter effluent (CFE) turbidity	CFE ≤ 1 NTU in 95% of readings and always less than 5 NTU		
Automatic Shutdown Conditions	 PDR > UCL 		
(shut filter train down and conduct a DIT to	 LRV_{ambient} < LRC 		
demonstrate membrane integrity is intact)	 IFE > 0.15 NTU for > 15 min 		
	 CFE > 5.49 NTU (may prompt boil water notice) 		

¹**Pressure transducer accuracy** is based on the manufacturer's stated accuracy (best fit straight line), expressed as % of span. The accuracy calculated in terms of [psi/min] must be less than or equal to the UCL in [psi/min]. Accuracy in terms of [psi/min] is calculated as follows:

Accuracy in psi/min = (% Accuracy x Max of span in psi) / DIT duration in minutes

² LRV_{ambient} is the best metric for demonstrating compliance with the log removal credit (LRC) granted.

- LRV_{ambient} must be equal to or greater than the LRC for *Cryptosporidium* shown in Table 1.
- Ensure that any LRV_{ambient} values displayed in SCADA are calculated using the formulae and variables shown in Appendix B.

Page 5 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

Appendix A - Explanation of operating limits and terms in Table 2.

The operating limits summarized in Table 2 are further described as follows:

• <u>Upper Control Limit (UCL) – 0.14 psi/min</u></u>

Every membrane system has an Upper Control Limit (UCL) measured in p_{si}/p_{min} . The UCL is the highest **p**ressure **d**ecay **r**ate (PDR) allowed during a direct integrity test (DIT). Exceeding the UCL indicates DIT failure. The failing membrane unit shall not operate until it passes a DIT. Based on a review of Jefferson's specific system and information provided by the membrane manufacturer, the UCL is established to be 0.14 p_{si}/p_{min} . Direct integrity tests that pass indicate that the membrane removes pathogens at the rate credited, e.g., 4.0 log (or 99.99%). Ensure that the SCADA/PLC system is programmed to account for this UCL. It is understood that the programming will use 0.06 psi/min as the UCL for Jefferson.

- <u>Membrane Performance (LRV_{ambient})</u>: The results of the direct integrity test can also be used to determine the log removal value of *Cryptosporidium* that is based on ambient or current operating conditions (LRV_{ambient}). The main difference between LRV_{DIT} and LRV_{ambient} is the use of the current operating flow when calculating LRV_{ambient}. Lower flows could yield a lower (less conservative) LRV value. Since your pathogen removal credit is in terms of 4.0-log, membrane performance must be determined to demonstrate compliance with the pathogen credit awarded using the same unit of measure [log]. Formulae and variables used to calculate LRV_{ambient} are included in Appendix B of this letter. In summary, LRV_{ambient} is the metric for demonstrating compliance. LRV_{ambient} must be equal to or greater than the log removal credit for *Cryptosporidium* shown in Table 1.
- <u>TMP</u>: The transmembrane pressure or "TMP" (pressure drop across the membranes) must not exceed 35 psi.
- <u>Flux:</u> The flux (^{flow}/_{filter feed area}) must not exceed 120 gallons per square feet per day [^{gal/SqFt}/_{day}]. It is understood that the programming will ensure that the flux will not exceed 35.8 ^{gal/SqFt}/_{day}.
- <u>DIT Turbidity Trigger (IFE > 0.15 NTU for > 15 min)</u>: A direct integrity test (DIT) must be performed on any filter unit in which the individual filter effluent (IFE) turbidity is greater than 0.15 NTU for more than 15 minutes. This must be programmed into the SCADA system.

Page 6 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

- <u>DIT Daily Trigger</u>: A DIT is also required each day of operation. If the pressure decay rate (PDR) drops below the upper control limit (UCL) of 0.14 ^{psi}/_{minute}, then the DIT is considered to have failed and the unit must be automatically taken off-line, repaired, and retested to show that it passes a DIT before being placed back into service. In other words, should the PDR of the daily PDT (or "air hold test") exceed 0.14 ^{psi}/_{minute}, this should indicate a "failed" DIT and the membrane must be taken out of service and may not be placed into service until it passes a DIT. A new DIT may be immediately run after a DIT failure, or repairs may be needed first (e.g., fibers pinned, leaks at pipe fittings repaired, etc.) followed by passing a new DIT. It is understood that programming will indicate a failed DIT if the PDR exceeds 0.06 psi/min (0.3 psi / 5-minute test duration).
- <u>DIT test pressure</u>: The minimum DIT pressure (i.e., the test pressure at the <u>end</u> of the DIT) must not drop below 17.47 psi. Should the pressure during a DIT drop below 17.47 psi, the DIT is considered invalid or "failed" and must be repeated. PALL has established a DIT <u>starting</u> test pressure of 25 psi with programming to indicate a failed DIT if the test pressure drops below 25 psi.
- <u>Automatic Shutdown Conditions</u>: The filters must be taken off-line or otherwise shut down, repaired and/or re-tested if any of the following occurs:
 - 1. PDR > UCL. The DIT PDR exceeds the 0.14 psi/min UCL.
 - 2. LRV_{ambient} < LRC. The LRV_{ambient} is less than the 4.0 log removal credit (LRC)
 - IFE > 0.15 NTU for > 15 min. The individual filter effluent (CFE) turbidity exceeds 0.15 NTU for more than 15 minutes.
 - 4. Combined Filter Effluent (CFE) turbidity exceeds 5.49 NTU (a boil water notice may be required)
- <u>DIT Sensitivity (LRV_{DIT})</u>: The results of the direct integrity test (pressure decay rate or "PDR") and the design flow can be used to determine the DIT sensitivity, expressed as a log removal value of *Cryptosporidium* (LRV_{DIT}). This LRV_{DIT} must be equal to or greater than the log removal credit (LRC) shown in Table 1 (i.e., LRC = 4.0-log). A PDR of 0.14 ^{psi/}min equates to an LRV_{DIT} of 4.0-log. Please ensure that any LRV_{DIT} values displayed in SCADA are calculated using the formulae and variables shown in Appendix B. LRV_{DIT} has been calculated to be 4.0-log as shown in Appendix B. PALL programming uses a PDR of 0.06 psi, which yields an LRV_{DIT} of 4.38-log.

Page 7 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

<u>Appendix B</u> - <u>Formulae and variables</u> used in calculating the log removal value (LRV_{ambient}) of each membrane filter train using current ambient operating conditions.

Formulae and variables used in calculating the log removal value ($\underline{LRV}_{ambient}$) of each membrane filter train using current ambient operating conditions is shown in Table B. *Table B. Formulae and variables used in the LRV*_{ambient} programming

Specification	Value			
LRV _{ambient} equation	$LRV_{ambient} = \log_{10}(\frac{Q_P \bullet ALCR \bullet P_{atm}}{\Delta P_{test} \bullet V_{sys} \bullet VCF})$			
ALCR equation	$ALCR_{Turbulent} = 170 \bullet Y \bullet \sqrt{\frac{(P_{test} - BP) \bullet (P_{test} + P_{atm})}{(460 + T) \bullet TMP}}$			
P _{Test} equation	$P_{\text{test}} = (0.193 \cdot \kappa \cdot \sigma \cdot \cos\theta) + BP_{\text{max}}$			
Volume of pressurized air in module during direct integrity testing [gallons and liters]	Unknown ^{gallons} / _{module} (Unk ^{liters} / _{module})			
V _{sys} , Total volume of pressurized air in the unit during direct integrity testing [gallons and liters]	192.31 gallons (727.97 liters)			
VCF, Volumetric Concentration Factor [dimensionless]	1.08			
VCF for backwash units in which filtrate goes to clearwell	N/A – no backwash recovery units			
P _{atm} , Atmospheric pressure [psia]	14.58 psia			
Y, Net Expansion Factor [dimensionless]	0.63 w/BP = 0 psi			
	(0.588 is lowest from Crane ¹ p. A-22)			
d, Lumen diameter [mm]	0.64 mm (0.00064 m)			
L, Potting depth or defect length [mm]	60 mm (0.06 m) – potting depth @ top			
f, friction factor (dimensionless)	0.025			
κ , Pore shape correction factor [dimensionless]	1.0			
σ, surface tension at 5°C, [^{dynes} / _{cm}]	74.97 dynes/cm			
θ, Liquid-membrane contact angle [degrees]	0 degrees			
Q _p , Maximum design flow rate [gpm]	829 gpm (3,138.1 lpm, 1.194 MGD)			
BP _{max} , Maximum backpressure during the DIT [psi]	3 psid (based on 2-meter module height)			
P _{Test} , Applied direct integrity test pressure [psi]	25 psi target starting DIT pressure			
(Should be \geq minimum test pressure in Table 2)	17.47 psi minimum ending DIT pressure			
D _{base} , Baseline diffusive loss expected through fully	0 psi			
intact membrane filter unit [psi/min]				

Crane Co. 1988. Flow of fluids through valves, fittings, and pipe. Technical Paper No. 410. Stamford, CT.

Page 8 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

P_{test}, LRV_{DIT}, and UCL Calculations:

Pore shape correction factor (K)	1.0	dimensionless		
Surface tension (Φ)	74.970	dynes/cm		
Contact angle (θ)	0.0	degrees	0	radians
Maximum backpressure (BP _{max})	3.0	psi	83.12	in H2O
Constant (3 μ m res. and unit conversions)	0.193	dimensionle	ess	

Minimum (ending) DIT test pressure	17.47	psi
Anticipated starting DIT pressure	25.0	psi

	$P_{test} = 0$	0.193	$F_{K} \bullet \sigma \bullet \cos \theta + BP_{\max}$ Equation 4.1
Where:	Ptest	=	minimum test pressure (psi)
	к	=	pore shape correction factor (dimensionless)
	σ	=	surface tension at the air-liquid interface (dynes/cm)
	θ	=	liquid-membrane contact angle (degrees)
	BPmax	=	maximum backpressure on the system during the test (psi)
	0.193	=	constant that includes the defect diameter (i.e., $3 \ \mu m$
			resolution requirement) and unit conversion factors

Calculation for Resolution and Sensitivity of the Membrane System

1. Determining Testing Pressure for Required Resolution (\leq 3 µm) The testing pressure can be calculated per Equation (4.1)

$$P_{t_{ext}} = (0.193 * \kappa * \sigma * \cos \theta) + BP_{max}$$
 Equation (4.1)

Table 1. Calculation Variables (P_{test})

Item	Description	Unit	Value	
P _{test}	Test pressure for required resolution	psi	17.47	
k	Shape correction factor	dimensionless	1	
σ	Surface tension of water @ 5 °C	dynes/cm	74.97	
θ Water contact angle of membrane medium		degree	0.00	
BP max	Sum of backpressure and static head	psid	3.00	

Since the testing pressure to be used is 25 psi or above and the pressure decay is anticipated lower than 1 psi during the duration of the test for Pall MF system, the resolution criterion is satisfied.

Page 9 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

					Range	span	(URL)	(LRL)	(LRL
LRVDIT:	OHA	PALL		Reference accuracy ±0.075% of calibrated span. Includes combined effects of	1	0.60 psi (41,37 mbar)	30.00 psi (2,07 bar)	0 psia (0 bar)	-14
Min PIT scale	0.0	0.0	psi	linearity, hysteresis, and repeatability ±0.065% of calibrated span (high accuracy option –P8)	2	3.00 psi (206,85 mbar)	150.00 psi (10,34 bar)	0 psia (0 bar)	-14
Max PIT scale	150.0	100.0	psi	For spans less than 10:1, accuracy = $\pm \left[0.009 \left(\frac{URL}{Span} \right) \right]$ % of Span	3	16.00 psi (1,11 bar)	800.00 psi (55,16 bar)	0 psia (0 bar)	-14
Transmitter calibrated range	150.0	100.0	psi						
Stated percent accuracy	0.075	0.075	perc	ent					
Transmitter accuracy	0.113	0.075	psi						
Duration of DIT	5.000	5.000	minu	ites					
Transmitter accuracy (+/-)	0.023	0.015	psi/n	nin					
UCL	0.140	0.140	psi/n	nin					
	16.07	10.71	= Tra	ansmitter accuracy in psi/min o	divid	ed by tl	he UCI	_ in	
Transmitter accuracy as % of UCL	%	%	psi/n	nin expressed as a percent					
Design capacity (Qpmax)	829.0	829.0	gpm						
Min DIT test pressure (P _{test})	17.47	25.00	psi						
Temperature	70.0	70.0	Deg	F					
ТМР	35.0	35.0	psi						
dPtestmin (transmitter accuracy)	0.023	0.140	psi/n	nin					
Atmospheric pressure (psia)	14.58	14.58	psi						
Max Backpressure (BP _{max})	3.0	0.0	psi						
System volume (V _{sys})	192.31	192.31	gal						
Effective test pressure	24.6	46.4	psi						
VCF	1.08	1.08	dime	ensionless					
	26.7	60.0							
ALCR (Laminar, H-P method)	36.7	69.2		ensionless					
LRVDIT (Laminar ALCR)	4.98	4.46	log						
	0.0050	0.0050							
Friction factor (f)	0.0250	0.0250		ensionless					
Length of breach flow path (L)	60.00	60.00	mm						
Lumen diameter (D)	0.64	0.64	mm						
Resistant coeff. (K)	2.34	2.34	dime	ensionless					

0-150 PSI, NSF: ROSEMOUNT P/N: 2088G2S22A1C6M5Q4DW Rosemount 2088

Specifications

Performance specifications For zero-based spans, reference conditions, silicone oil fill, 316L		Functional specifications Table 2. 2088 Range Values					
SST isolating diaphragm.	Range	Minimum	Upper	ľ			
Reference accuracy	Kange	span	(URL)				
+0.075% of calibrated span. Includes combined effects of	1	0.60 psi	30.00 psi	Τ			

nge	Minimum	Upper	Lower	Lower ⁽¹⁾		
	span	(URL)	(LRL)	(LRL) (gage)		
	0.60 psi	30.00 psi	0 psia	–14.70 psig		
	(41,37 mbar)	(2,07 bar)	(0 bar)	(–1,01 bar)		
	3.00 psi	150.00 psi	0 psia	–14.70 psig		
	(206,85 mbar)	(10,34 bar)	(0 bar)	(–1,01 bar)		
	16.00 psi	800.00 psi	0 psia	-14.70 psig		
	(1,11 bar)	(55,16 bar)	(0 bar)	(-1.01 bar)		

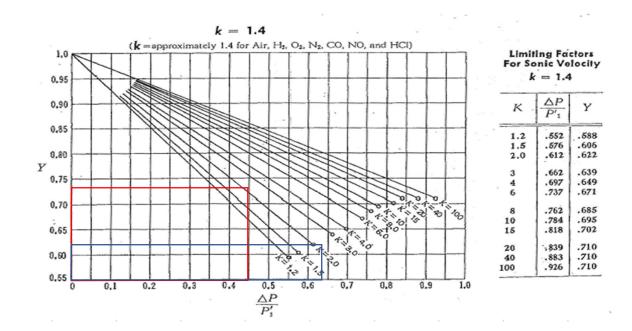
ALCR (Turbulent, Darcy meth	nod)	19.89	24.74	dimensionless
LRVDIT (Turbulent ALCR)		4.711	4.012	log
	DDVD			

0.45

0.74

 $[(P_{test} - BP_{max})/(P_{test} + P_{atm})] =$

Net Expansion Factor (Y)


$$ALCR = 170 * Y * \sqrt{\frac{(P_{sel} - BP)(P_{sel} + P_{alm})}{(460 + T) * TMP}}$$
Equation (C.4)
$$LRV_{DIT} = \log(\frac{Q_p * ALCR * P_{alm}}{\Delta P_{sel} * V_{se} * VCF})$$
Equation (4.9)

(4.9)

0.63 Calculated

0.63 dimensionless

Page 10 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

UCL:	OHA	PALL	
Design capacity	829.0	829.0	gpm
ALCR	19.89	24.74	dimensionless
Atmospheric pressure	14.6	14.6	psi
Log removal credit (LRC)	4.0	4.0	log
System volume	192.3	192.3	gal
VCF	1.1	1.1	dimensionless
Bpmax used in ALCR	3.0	0.0	psi
Y, Net Expansion Factor for ALCR	0.74	0.63	dimensionless
UCL =	0.12	0.14	psi/min

$$UCL = \frac{Q_{p} \bullet ALCR \bullet P_{atm}}{10^{LRC} * \bullet V_{sys} \bullet VCF}$$
 Equation (4.17)

Page 11 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

Check LRV using PALL UCL of 0.14 psi/min:							
Flow	829	gpm					
Temperature	70.0	degF					
ТМР	35.00	psi					
Most recent test end pressure	25.0	psi					
Most recent test result	0.14	psi/min					
UCL	0.12	psi/min					
Min DIT PSI Allowed	17.47	psi	ALCR Input	s:			
Atmospheric pressure	14.58	psi	Temp =	70	deg F		
Backpressure	3.0	psi	Y =	0.74			
			BP =	3	psi		
ALCR	27.26	dimensionless	Patm =	14.58	psia		
System volume	192.3	gal	TMP =	35.00	psi		
VCF	1.1	dimensionless	Ptest =	25.00	psi		
LRV	4.05	log					

$$ALCR = 170 * Y * \sqrt{\frac{(P_{acri} - BP)(P_{acri} + P_{atm})}{(460 + T) * TMP}}$$
 Equation (C.4)

In addition to calculating the sensitivity, Equation 4.9 can also be used to determine the LRV verified by the most recent direct integrity test via applying values for the variables specific to this test event.

$$LRV = \log \left(\frac{Q_p \bullet ALCR \bullet P_{atm}}{\Delta P_{test} \bullet V_{sys} \bullet VCF} \right)$$
 Equation 4.9

Page 12 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

PALL Direct Integrity Testing Calculations dated 9/24/2021:

Resolution and LRV Calculations for Direct Integrity Testing Using the MFGM Method for Water Treatment Plant at City of Jefferson OR - Water Treatment Plant - Rev. 1

Objectives

The objective is to determine (1) the testing pressure required to meet the resolution criterion of 3 μ m or less as specified in the Long-Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR), (2) the pressure decay value (PDR) corresponding to required Log Reduction Value (LRV) for particles with the size of 3 μ m at plant design conditions.

Calculation for Resolution and Sensitivity of the Membrane System

Determining Testing Pressure for Required Resolution (≤3 µm)

The testing pressure can be calculated per Equation (4.1)

$$P_{iest} = (0.193 * \kappa * \sigma * \cos \theta) + BP_{max}$$
 Equation (4.1)

Table 1. Calculation Variables (Ptest)

Item	Description	Unit	Value
P test	Test pressure for required resolution	psi	17.47
k	Shape correction factor	dimensionless	1
σ	Surface tension of water @ 5 °C	dynes/cm	74.97
θ	Water contact angle of membrane medium	degree	0.00
BP max	Sum of backpressure and static head	psid	3.00

Since the testing pressure to be used is 25 psi or above and the pressure decay is anticipated lower than 1 psi during the duration of the test for Pall MF system, the resolution criterion is satisfied.

Page 13 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

2. Calculating Sensitivity (LRV DIT)

The LRV calculation is performed by using Equation (4.9) in USEPA's Membrane Filtration Guidance Manual (USEPA, 2005):

$$LRV_{DH} = \log(\frac{Q_{p} * ALCR * P_{aon}}{\Delta P_{text} * V_{sys} * VCF})$$
 Equation (4.9)

The air-liquid conversion ration (ALCR) is calculated using Darcy Equation by assuming that the hollow fiber breaks completely at the interface of potting layer, which results in a shortest flow path for bypass flow. The calculation also uses the highest trans-membrane pressure (TMP) during a filtration cycle. This results in a conservative result that has a low LRV.

Air-to-liquid-conversion ratio (ALCR):

$$ALCR = 170 * Y * \sqrt{\frac{(P_{uest} - BP)(P_{nest} + P_{abn})}{(460 + T) * TMP}} \qquad \text{Equation (C.4)}$$
$$Y \propto \left[\frac{1}{\frac{(P_{nest} - BP)}{(P_{nest} + P_{abn})}}, K\right] \qquad \text{Equation (C.5)}$$

K: resistant coefficient

$$K = f * \frac{L}{d_{f, ber}}$$
 Equation (C.6)

Page 14 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

PALL Water

The parameters used in the LRV calculation are presented in Table 2.

Item	Description	Unit	Value
Q _p	design (instantaneous) flow per rack	gpm	829
VCF ^a	volumetric concentration factor	dimensionless	1.08
ΔP_{test}	The smallest pressure decay rate associated w/ a breach	psi/min.	0.06
V 535 ^b	system hold-up volume	gallons	192.31
P _{am}	Atmospheric pressure	psi	14.58
BP ^{b,c}	back-pressure during pressure decay test	psi	0
r ^b	Temperature	°F	70
TMP b	terminal trans-membrane pressure during filtration	psi	35.00
f	friction factor	dimensionless	0.025
Ľ	the length of flow path for breach	M	0.06
D	diameter of hollow fiber lumen	M	0.00064
P test b	testing pressure for pressure decay test	psi	25.0

Table 2	Parameters	Used fo	I RV	Calculation
Table 2.	1 al anici (1)	U SUU IU		Calculation

Note: a 2004

b - Based on the design data

c - Assume worst-case fiber breakage (at the top potting layer)

.

.

+

Find K:

$$K = f * \frac{L}{d_{f \text{ iber}}}$$
 Equation (C.6)

- f: friction factor
- *L*: the length of flow path of the breach (equal to the potting thickness)

d _{fiber}

lumen diameter of the fiber.

$$K = 0.025 * \frac{0.06}{0.00064}$$

Page 15 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

Find Y value using the chart on page A-22 from Crane:

$$\Upsilon \propto \left[\frac{1}{\frac{(P_{max} - BP)}{(P_{max} + P_{abm})}}, K \right]$$

Substitute Y into Equation (C.4): Substitute ALCR into Equation (4.9):

Table 3.	Additional	Parameters	Used for	LRV	Calculation
----------	------------	------------	----------	-----	-------------

Item	Description	Unit	Value
K	Resistant coefficient	dimensionless	2.34
Y	Net expansion factor	dimensionless	0.63
ALCR	Air to liquid conversion ratio	dimensionless	24.58
LRV _{dir}	Sensitivity of direct integrity test	log	4.38

Therefore, the sensitivity of direct integrity testing is = LRV_{dit} in Table 3.

 Calculate Upper Control Limit (UCL) and Alert Level (AL) for Direct Integrity Testing. The UCL for direct integrity testing, the pressure decay rate corresponding to the required LRV, is determined by rearranging Equation (4.9):

$$UCL = \frac{Q_{\mu} \cdot ALCR \cdot P_{am}}{10^{1/4C} \cdot V_{m} \cdot VCF}$$
Equation (4.17)

Where: UCL - upper control limit for pressure decay rate, psi/min. LRC* - required LRV for the membrane system

If the required LRV for the membrane system is 4-logs, substitute $LRC^* = 4$ and the same parameters in Table 2:

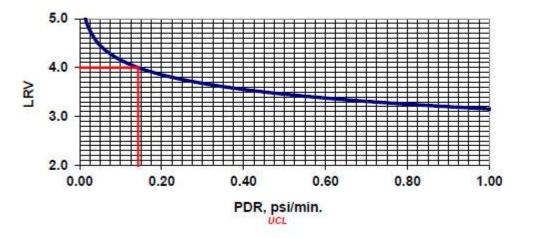

The plot of LRV as a function of pressure decay rate is presented in Figure 1 in which the UCL is marked with red dotted line.

Table 4. Results of UCL Calculation				
Item	Description	Unit	Value	
UCL	Upper control limit	psi/min	0.14	

Table 4. Results of UCL Calculation

Page 16 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

Figure 1: LRV as a function of pressure-decay rate (PDR)

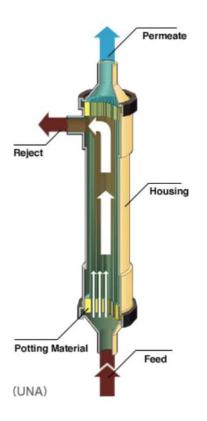
UCL is indicated on the graph corresponding to LRV of 4-logs.

References

Sethi, S., G. Crozes, D. Hugaboom, B., Mi, J. M. Curl, and B. J. Mariñas (2004): Assessment and Development of Low-Pressure Membrane Integrity Monitoring Tools, AwwaRF Report No. 91032, Denvor, CO.

USEPA: National Primary Drinking Water regulations: Long Term 2 Enhanced Surface Water Treatment Rule; Final Rule, Federal Register, January 5, 2006

USEPA: Membrane Filtration Guidance Manual, EPA-815-R-06-009, November, 2005 Page 17 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021


Appendix C – Product specifications for the PALL/Asahi Kasei UNA-620A

Characteristics regarding the membrane modules are provided in Table A.

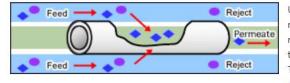

Specification	Value
Membrane Manufacturer	Asahi Kasei
Membrane Model Number	UNA-620A
Challenge test standard (ANSI/NSF 419-YY, ETV, etc.)	NE-WTTAC – Univ. of New Hampshire
Challenge test report date	June 2004
LRV _{C-Test}	5.31-log
OHA-DWS Challenge Study Verification Information	Date Verified = Feb 2010
	LRC = 4.0-log (Giardia/Crypto)
	Max Flux = 120 GFD @ 20°C
	Max TMP = 35 psi
Assumes a 3-psi maximum backpressure (BP _{max}) =>	Minimum DIT Pressure = 17.5 psi
ANSI/NSF Standard 61 certification (yes/no)	Yes
Membrane type (<i>e.g.,</i> hollow fiber, etc.)	Hollow fiber
Number of fibers per module	Unknown
Fiber inside (lumen) diameter	0.64 mm
Fiber wall thickness	Unknown
Active fiber length (length of fibers not in potting)	Unknown
Potting depth	60 mm (potting @ top of module)
Membrane classification (<i>e.g.,</i> ultra- or micro-filtration)	Ultrafiltration
Nominal membrane pore size (<i>e.g.</i> , 0.01 μm, etc.)	0.1 μm
Membrane material (<i>e.g.</i> , PVDF, polysulfone, etc.)	PVDF
Roughness coefficient	Unknown
Feed side membrane filtration area (ft ²)	538 ft² (50 m²)
Filtration Flow Direction (<i>i.e.</i> , inside-out or outside-in)	Outside-in
Hydraulic configuration (<i>i.e.</i> , deposition or suspension)	Deposition
Submerged or Pressurized	Pressurized
Module Height (inches)	85-inches (2,160 mm)
Module Diameter (inches)	6.5-inches (165 mm)

Table A. Membrane Filter Module Specifications

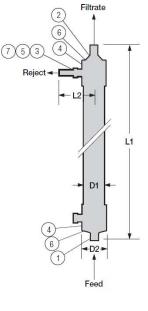
Page 18 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

Outside-In filtration 🛛 🗢 Suspended substances 🔷 Water molecule

Utilizing the lager area of the outer surface of the membrane fiber, the filtration load per unit area may be reduced. Additionally, a physical cleaning technique such as 'air-scrubbing' may be utilized. These features make this mode of operation well suited for high volume water clarification.

Microza modules for water clarification use hollow-fiber type membranes for outside-in filtration.

Operating Parameters


Dimensions

Performance ²	Process Capacity Typical Range: 2.2-6.8 m³/h / 10-30 gpm
Dimensions	 Membrane Area: 50 m² / 538 ft² Module Length: 2160 mm / 85 in Module Diameter: 165 mm / 6.5 in
Operating Conditions	 Maximum Operating Temperature: 40°C / 104°F Maximum Transmembrane Pressure: 3 bar / 45 psi Maximum Inlet Pressure: 3 bar / 45 psi pH Range: 1-10
Materials	Membrane: PVDF Housing: ABS Potting Material: Polyurethane Gaskets: Silicone Preservative: 40% calcium chloride

² Please contact Pall Corporation for operating manual and system sizing, as capacity per module is dependent on feed water quality, temperature and other factors.

Part Numbers / Ordering Information

Module						
Module Part Number	Length (L ₁) mm / in	Length (L ₂) mm / in	Diameter (D ₁) mm / in	Diameter (D ₂) mm / in		
UNA-620A	2364 / 93	272 / 10.7	165 / 6.5	221 / 8.7		

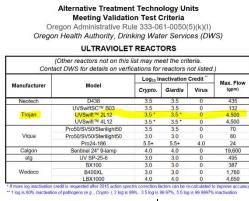
Oregon Administrative Rule 333-061-0050(4)(c)(l) Oregon Health Authority, Drinking Water Services (DWS) * MEMBRANE FILTERS «									
					list may me rifications i				
Manufacturer	Contac	Log ₁₀ Removal Credit		Maximum	Maximum	Maximum	Minimum		
	Model	Crypto.	Giardia	Virus ^A	Flux	TMP (psi @ 20°C)	Flow/Module (gpm)	Static DIT ^B Pressure (psi)	Date Verified
Dow	XUSV-5203	3.5	3.5	0	60	30	23	30	2010 Feb
	SFD-2880XP	4.0	4.0	0	70	24	41	19	2010 Dec ^c
	SFD-2860XP	4.0	4.0	0	62	30	26	19	2010 Dec
	DW102-1100	4.0	4.0	0	70	30	50.2	30.25	2013 Jan ^C
GE Zenon	ZeeWeed 500C	4.0	4.0	0	60	12	10.4	10.29	2013 Oct
	ZeeWeed 500D	4.0	4.0	0	60	12	18.3	10.29	2013 Oct
	ZeeWeed 1000 V3	4.0	4.0	0	30	13	17	10	2009 July
	ZeeWeed 1000 V4	4.0	4.0	0	60	13	17.4	10	2013 Oct
DuPont inge (formerly BASF)	dizzer XL 0.9 MB 60 W	4.0	4.0	0	105	22	47	17.5	2015 Sept ^c
	dizzer XL 0.9 MB 70 WT	4.0	4.0	0	105	22	55	17.8	2015 Sept ^C
	dizzer XL 0.9 MB 80 WT	4.0	4.0	0	105	22	55	17.8	70 WT equiv
Pall	UNA-620A	4.0	4.0	0	120	35	44	17.5	2010 Feb
	USV-6203	4.0	4.0	0	120	35	44	17.5	2010 Feb
	XUSV-5203	4.0	4.0	0	120	35	33	17.5	2010 Feb
Scinor	SMT 600-P50	4.0	4.0	0	120	43.5	46	21	2015 June ^c
	SMT 600-P80	4.0	4.0	0	120	43.5	72	21	P50 equivalen
	SMT 600-S26	4.0	4.0	0	106	11	23.5	15.9	2016 June ^c

Virus removal credits are not available in Oregon due to lack of a direct integrity test for virus-sized particles. All approvals and removal credits are subject to change should information indicate the model is not capable of meeting regulatory requirements. ⁶ DIT = Direct Infegrity Test, Acceptable pressure decay rates during a DIT are, in part a function of system volume and must be confirmed with DWS during plan revier

Page 1 of 3

table pressure decay rates during a DIT are, in part, a function of system volume and must be confirmed with DWS during plan rev inimum static pressure may be higher than listed here if backpressure is above minimums. Ino Water Equipment Performance'

F


For more information, please call the OHA Drinking Water Services at ph. 971-673-0405 (8am-5pm PT, Mon-Fri)

Public D

Page 19 of 19 City of Jefferson (PWS #00408) Final Approval PR #138-2019 – Water Treatment Plant October 6, 2021

Appendix D – Product specifications for the Trojan UVSwiftTM 2L12 UV Reactor from the UV Validation Report Reviewed by OHA-DWS

Table 1 – Disinfection Inactivation Credit				
Target Organism	Inactivation Credit (log ₁₀)			
Giardia lamblia	3.5 (variable)			
Cryptosporidium sp.	3.5 (variable)			
Viruses	0.0 (up to 2.0 log, but not			
	reviewed)**			

Table 2 – Syst	tem Operating Parameters	LBX1000 4.0 * If more log inactivation credit is requested after 2015 action spectra correction facto ** 1 log is 90% inactivation of pathogens (e.g., Crypto.), 2 log is 99%, 3.5 log is 99 5			
Parameter	Value				
Flow Range	0.2 – 6.5 mgd				
UV Transmittance Range	70% - 98%				
Action Spectra Correction Factor, CF _{AS}	For MS2: 1.35				
(* interim – readjust in 2013)	For T1: 1.35				
Fouling/Aging, S/S ₀	Use lowest sensor reading	g; Monitor relative lamp			
	output regularly				

Table 3 – Trojan 2L12 Characteristics				
Polychromatic Bias, <i>B_{poly}</i>	1			
Uncertainty of Validation, U _{Val}	$U_{Val} = U_{ln} = {}^{t \times SD}/_{RED} \times 100\%$, where			
	MS2: t = 1.987; SD = 3.495			
	T1: t =1.989; SD = 0.6972			
RED, B _{RED}	T1 = 1.03, MS2 = 1.82;			
(See App. G. Variable, one example given.)	for 90% UVT, 2.0 log <i>Crypto</i> . inactivation			
Dose Ranges	For MS2: 7.1 – 111 mJ/cm ²			
	For T1: 2.8 – 26 mJ/cm ²			
Lamps	4; Diameter = 0.866"; Arc Length = 11.575"			
Lamp model	Phillips Lighting. Trojan part # 820810			
Mercury type & content	Unknown – WS configuration critical to public health protection.			
	Create spill plan.			
Lamp and sensor sleeve	GE Quartz (Type 021 AL material, 4 mm thick, air-quartz interfaces)			
	(Type 021 is a synthetic fused silica sleeve)			
	Trojan part # 820821-558			
Lamp and Sensor Sleeve UVT% at 240 nm	88%			
Sensors:				
Reference	One; Trojan part # 015362-R1-798S			
Duty	One; Trojan part # 015362-S1-798S			