

800 NE Oregon Street, #640 Portland, OR 97232-2162 Phone: 971-673-0191 Fax: 971-673-0694 www.healthoregon.org/DWP

July 16, 2021

Bill Palmaymesa PO Box 220 Antelope, OR 97001

Re: Young Life (PWS ID#01246) Membrane Module Replacement with 8 Toray HFUG-2020AN Modules Conditional Approval – PR# 75-2021

Dear Mr. Palmaymesa:

Thank you for submitting information regarding the membrane module replacement project for Young Life. On May 12, 2021, our office received information on a project to replace the 8 existing Toray HFS-2020 membrane modules originally installed in 2013 with a total of 8 Toray HFUG-2020AN ultrafiltration PVDF hollow fiber membrane modules (4 modules per skid in two WesTech AP-VI filtration skids with capacity for up to 6 modules each). A plan review fee of \$248 was also received on May 12, 2021. The Oregon Health Authority grants **Conditional Approval** for this project with the following conditions that will need to be met prior to granting Final Approval:

- 1. <u>Direct integrity testing parameters</u> will need to be determined and programmed into the SCADA system. These parameters include:
 - a. A **direct integrity test pressure**, which is to be set no less than 18.21 psi. It is understood that the starting direct integrity test pressure is designed to be 20 psi;
 - b. An **upper pressure decay control limit** of 0.09 psi/min that indicates a failure of the direct integrity test and prompts an automatic shut-down of the filtration skid; and
 - c. A log removal value (LRV_{ambient}) reflective of particle and pathogen removal in the 3 micron or less size range that is routinely calculated based on current ambient operating conditions (a metric commonly referred to as LRV_{ambient}). In summary, LRV_{ambient} is the metric for demonstrating 4.0-log (99.99%) Cryptosporidium removal credited for the membrane filters. Since the 0.09 psi/min control limit is to be set up in SCADA as soon as the new membrane modules are installed, it is acceptable to add LRV_{ambient} as part of a previously planned upgrade of the SCADA system in October 2021.

Page 2 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

- 2. <u>Alarm set points</u> are updated to reflect the following operating limits which, if exceeded, prompt an automatic shut-down of the filter skid:
 - a. Maximum flow of 323 gpm per filter skid containing 4 membrane modules, maximum flow of 80.75 gpm per membrane module, and/or a maximum flux of 120 gfd. Per WesTech, each filter skid has a design capacity of 115.9 gpm, therefore, an alarm set point set to 115.9 gpm or less would fulfill this requirement.
 - b. Maximum transmembrane pressure (TMP) of 29 psi.
 - c. Minimum LRV_{ambient} of 4.0-log (added w/ SCADA upgrades in October 2021)
 - d. Maximum direct integrity test pressure decay rate of 0.09 psi/min.
 - e. An alarm set point established to trigger a filter skid shut-down when the individual filter effluent turbidity exceeds 0.15 NTU for more than 15 minutes so that a direct integrity (pressure decay) test can be performed.
- 3. <u>SCADA programming</u> should ensure that the variables and constants used to determine the pressure decay rate and LRV_{ambient} are viewable to the operator for verification purposes (see images at the end of Appendix A for examples).
- 4. <u>Measures are taken to ensure that the membrane filter unit is isolated during the CIP. A</u> <u>double block-and-bleed system may be used to accomplish this as shown in the schematic</u> <u>to the right =></u>
- <u>The Operation and maintenance manual is updated</u>, <u>or an addendum added to incorporate the new</u> <u>HFUG-2020AN specifications, including any</u> <u>necessary changes to the membrane testing and</u> <u>module fiber repair/pinning procedures. (see images</u> <u>at the end of Appendix A for examples)</u>

The remainder of this letter includes:

- 1) <u>Table 1</u> <u>Log removal credits</u> (LRC) granted for the Toray HFUG-2020AN module.
- 2) <u>Table 2</u> <u>Operating limits</u> that help ensure that the log removal credits granted are met.
- 3) <u>Appendix A</u> <u>Explanation of operating limits</u> and terms in Table 2.
- 4) <u>Appendix B</u> <u>Formulae and variables</u> used in calculating the log removal value (LRV_{ambient}) of each membrane filter unit (WesTech AP-VI skid containing four Toray HFUG-2020AN modules) using current ambient operating conditions.

5) <u>Appendix C</u> – <u>Product specifications</u> for the Toray HFUG-2020AN module.

Page 3 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

When final approval is granted, the membrane modules will be granted log removal credits (LRCs) for pathogen removal as shown in Table 1. The LRCs are based on a verification of the Challenge Study Report from the National Sanitation Foundation (NSF) dated August 15, 2019 (NSF job #J-00320592) for the installed Toray HFUG-2020AN membrane modules.

Table 1 – Filter Log Removal Credit (LRC)		
Pathogen	Removal Credit (log10)	
Giardia lamblia	4.0	
Cryptosporidium sp.	4.0	
Viruses	0.0	

The LRCs above are only valid provided operations are within the limits shown in Table 2 below. Ensure SCADA/PLC programming accounts for the operating limits (e.g. set system alarms to ensure operating limits are met):

Operating Parameter	Limit
Direct integrity test (DIT) frequency	Conduct at least 1 DIT each day of operation
DIT duration/hold time	5 minutes
DIT starting test pressure	20 psi
Minimum allowed DIT pressure	18.21 psi throughout the DIT duration (starting test pressure is anticipated to be 20 psi)
Maximum allowable pressure decay rate (PDR) upper control limit (UCL)	UCL = 0.09 ^{psi} / _{min}
Minimum DIT pressure transducer accuracy for the established UCL ¹	<u>+</u> 0.5% of span (0-50 psi), 0.05 psi/min (equal to the stated accuracy of the Wika-A10 pressure transducer installed).
Membrane Minimum Performance (LRV _{ambient}) ²	LRV _{ambient} = 4.0-log (must be <u>></u> 4.0-log LRC)
DIT Sensitivity (LRV _{DIT})	4.27-log at PDR = 0.05 psi/minute and flow of 115.9 gpm. (4.0-log at PDR = 0.09 psi/min and flow of 115.9 gpm. 4.49-log at PDR = 0.03 psi/min and flow of 115.9 gpm.)
Maximum transmembrane pressure (TMP)	29 psi at 20°C
Maximum allowed filtrate flux [gfd]	120 gal/SqFt/day @ 20°C. This max flux yields a peak plant production of 323 gpm using 4 out of 6 possible modules per skid (80.75 gpm/module). 115.9 gpm is programmed into the PLC as the maximum design flow per skid (43 gal/SqFt/day)
Individual filter effluent (IFE)	IFE ≤ 0.15 NTU for ≥ 15 consecutive minutes
Combined filter effluent (CFE) turbidity	CFE \leq 1 NTU in 95% of readings and always less than 5 NTU

Page 4 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

Automatic Shutdown Conditions (shut filter train down and conduct a DIT to demonstrate membrane integrity is intact) ○ PDR > UCL

○ LRV_{ambient} < LRC

• IFE > 0.15 NTU for > 15 min

• CFE > 5.49 NTU (may prompt boil water notice)

¹**Pressure transducer accuracy** is based on the manufacturer's stated accuracy (best fit straight line), expressed as % of span. The accuracy calculated in terms of [psi/min] must be less than or equal to the UCL in [psi/min]. Accuracy in terms of [psi/min] is calculated as follows:

Accuracy in psi/min = (% Accuracy x Max of span in psi) / DIT duration in minutes

² LRV_{ambient} is the best metric for demonstrating compliance with the log removal credit (LRC) granted.

- LRV_{ambient} must be equal to or greater than the LRC for *Cryptosporidium* shown in Table 1.
- Ensure that any LRV_{ambient} values displayed in SCADA are calculated using the formulae and variables shown in Appendix B

Thank you for your cooperation during this process and if you have any questions on the information above, or would like this information in an alternate format, please contact me at 971-200-0288 or via e-mail at <u>evan.e.hofeld@dhsoha.state.or.us</u>.

Sincerely,

EronAffel

Evan Hofeld, PE Regional Engineer Oregon Health Authority - Drinking Water Services

Page 5 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

Appendix A - Explanation of operating limits and terms in Table 2.

The operating limits summarized in Table 2 are further described as follows:

• <u>Upper Control Limit (UCL) – 0.09</u> ^{psi}/_{min}

Every membrane system has an Upper Control Limit (UCL) measured in psi/min. The UCL is the highest **p**ressure **d**ecay rate (PDR) allowed during a direct integrity test (DIT). Exceeding the UCL indicates DIT failure. The failing membrane unit shall not operate until it passes a DIT. Based on a review of Young Life's specific system and information provided by the membrane manufacturer, the UCL is established to be 0.09 psi/min. Direct integrity tests that pass indicate that the membrane removes pathogens at the rate credited, e.g. 4.0 log (or 99.99%). Ensure that the SCADA/PLC system is programmed to account for this UCL.

• <u>Membrane Performance (LRV_{ambient})</u>: The results of the direct integrity test can also be used to determine the log removal value of *Cryptosporidium* that is based on ambient or current operating conditions (LRV_{ambient}). The main difference between LRV_{DIT} and LRV_{ambient} is the use of the current operating flow when calculating LRV_{ambient}. Lower flows could yield a lower (less conservative) LRV value. Since your pathogen removal credit is in terms of 4.0-log, membrane performance must be determined to demonstrate compliance with the pathogen credit awarded using the same unit of measure [log]. Formulae and variables used to calculate LRV_{ambient} are included in Appendix B of this letter. In summary, LRV_{ambient} is the metric for demonstrating compliance. LRV_{ambient} must be equal to or greater than the log removal credit for *Cryptosporidium* shown in Table 1.

• <u>TMP</u>: The transmembrane pressure or "TMP" (pressure drop across the membranes) must not exceed 29 psi.

- <u>Flux:</u> The flux (^{flow}/_{filter feed area}) must not exceed 120 gallons per square feet per day [^{gal/sqFt}/_{day}]. This equates to a peak plant production of 646 gpm with all 8 modules in service (80.75 gpm/module, 324 gpm/skid), which is based on the flows tested during the Challenge Study for the HFUG-2020AN commensurate with the 4.0-log credit granted. WesTech has established a maximum design flow of 115.9 gpm per skid.
- <u>DIT Turbidity Trigger (IFE > 0.15 NTU for > 15 min)</u>: A direct integrity test (DIT) must be performed if the turbidity is greater than 0.15 NTU for more than 15 minutes. This must be programmed into the SCADA system.

Page 6 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

- <u>DIT Daily Trigger</u>: A DIT is also required each day of operation. If the pressure decay rate (PDR) drops below the upper control limit (UCL) of 0.09 ^{psi}/_{minute}, then the DIT is considered to have failed and the unit must be automatically taken off-line, repaired, and retested to show that it passes a DIT before being placed back into service. In other words, should the PDR of the daily PDT (or "air hold test") exceed 0.09 ^{psi}/_{minute}, this should indicate a "failed" DIT and the membrane must be taken out of service and may not be placed into service until it passes a DIT. A new DIT may be immediately run after a DIT failure, or repairs may be needed first (e.g. fibers pinned, leaks at pipe fittings repaired, etc.) followed by passing a new DIT.
- <u>DIT test pressure</u>: The minimum DIT pressure (i.e., the test pressure at the end of the DIT) must not drop below 18.21 psi. Should the pressure during a DIT drop below 18.21 psi, the DIT is considered invalid or "failed" and must be repeated. WesTech has established a DIT starting test pressure of 20 psi to help ensure that the minimum DIT pressure is met.
- <u>Automatic Shutdown Conditions</u>: The filters must be taken off-line or otherwise shut down, repaired and/or re-tested if any of the following occurs:
 - 1. PDR > UCL. The DIT PDR exceeds the 0.09 p_{si}/p_{min} UCL.
 - 2. LRV_{ambient} < LRC. The LRV_{ambient} is less than the 4.0 log removal credit (LRC)
 - IFE > 0.15 NTU for > 15 min. The individual filter effluent (IFE) turbidity exceeds 0.15 NTU for more than 15 minutes.
 - 4. Combined Filter Effluent (CFE) turbidity exceeds 5.49 NTU (a boil water notice may be required)
- <u>DIT Sensitivity (LRV_{DIT})</u>: The results of the direct integrity test (pressure decay rate or "PDR") and the design flow can be used to determine the DIT sensitivity, expressed as a log removal value of *Cryptosporidium* (LRV_{DIT}). This LRV_{DIT} must be equal to or greater than the log removal credit (LRC) shown in Table 1 (i.e., LRC = 4.0-log). A PDR of 0.09 ^{psi}/_{min} equates to an LRV_{DIT} of 4.0-log. Please ensure that any LRV_{DIT} values displayed in SCADA are calculated using the formulae and variables shown in Appendix B. LRV_{DIT} has been calculated to be 4.0-log as shown in Appendix B.

Page 7 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

Images on the following pages show Young Life's SCADA screens and sections of the operation and maintenance manual that may need to be updated to reflect the new membrane modules.

Alarms for inlet high pressure, TMP, and PDT pressure and pressure decay rate (PDR):

UF Bank 2 (also check **UF Bank 1**) for PDT loss, IFE turbidity, flux and permeability:

Page 8 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

Rated Operating Specifications

WESTECH	BATED OPTIGATING
Rated Operating Specifications	
The following limits, set forth by the merida be observed at all turnes in order to realize in contenies module. WorTech may request Owner in the owner of a merideane module demonstrate that the modules have been op with WarTech's operating instructions.	nene recordectarier, marst of the warmarky for the open sing lags three the warmarky claim to present in accordance
Raw Water Quality:	
Particulate	< 200 micros.
Temperature Range	
 Turbidity, Intermittent Peak (<68) 	100 NT0 [or 100 NT0]
 Turbidity, Continuous Maximum 	
pH Range	1-10
Production Limits	
· Has. Inlet Pressure	
Filtration TMP Limit	<29.0 pead
Max. Ford Flow Rate [per module) 53 gpm
Max, Normalized Flux	
· Integrity Test, Max. Initial Pressu	re
 Integrity Test, Upper Control Lim 	n
Backwash Limits	135 pri
 Max. Backwash Pressure 	
Nax. TMP	29.0 pso
 Max. BW Flow Rate (per module))
 Max Air Scour Pressure 	6 psi
· Max Air Scour Flow Rate (per m	odule)

System Process Summary

Table 3. AP-VIPCOL 2		(4.450)	160 000	n (10°C)	150 ann	(8°C)
Parameter	200 gpm	(14-C)	100 gpr	1(10 0)	8	10 01
Membrank Moon g	1		1		1	
Membrane Area per Module	775	ft ²	775	ft²	775	ft²
Membrane Area per System	6,200	ft2	6,200	ft2	6,200	ft²
Design Temperature	14	°C	10	°C	8	°C
Flux at Design Temperature	53.56	gfd	42.98	gfd	40.34	gfd
Normalized Flux (20°C) at Design Temperature	62.51	gfd	56.27	gfd	56.04	gfd
Approx. Flow Rates						
Instantaneous	230.6	gal/min	185.1	gal/min	173.7	gal/min
Average Gross	208.1	gal/min	167.1	gal/min	156.8	gal/min
Average Net Permeate	200.0	gal/min	160.0	gal/min	150.0	_gal/min
Approx. Net Permeate Production	0.288	MGD	0.230	MGD	0.216	MGD
Backwash Waste Volume per Day	5,739	gal/day	4,592	gal/day	4,305	_gal/day
Influent Used for Rinsing/Draining	5,926	gal/day	5,586	gal/day	5,500	gal/day
estimated Water Recovery	96.1	%	95.8	. %	95.7	%
estimated CIP Frequency	> 30	Days	> 30	Days	> 30	Days

Page 9 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

<u>Appendix B</u> - <u>Formulae and variables</u> used in calculating the log removal value (LRV_{ambient}) of each membrane filter unit (WesTech AP-VI skid containing four Toray HFUG-2020AN modules) using current ambient operating conditions.

Formulae and variables used in calculating the log removal value ($\underline{LRV}_{ambient}$) of each membrane filter unit (WesTech AP-VI skid containing four Toray HFUG-2020AN modules) using current ambient operating conditions is shown in Table B.

Specification	Value
LRV _{ambient} equation	$LRV_{ambient} = \log_{10}(\frac{Q_P \bullet ALCR \bullet P_{atm}}{\Delta P_{test} \bullet V_{sys} \bullet VCF})$
ALCR equation	$ALCR_{Turbulent} = 170 \bullet Y \bullet \sqrt{\frac{(P_{test} - BP) \bullet (P_{test} + P_{atm})}{(460 + T) \bullet TMP}}$
P _{Test} equation	$P_{Test} = 0.193 \bullet \kappa \bullet \sigma \bullet \cos\theta$
Volume of pressurized air in module during direct integrity testing [gallons and liters]	9.24 ^{gallons} /module (34 ^{liters} /module)
V _{sys} , Total volume of pressurized air in the unit during direct integrity testing [gallons and liters]	45.71 gallons (173 liters)
VCF, Volumetric Concentration Factor [dimensionless]	1
VCF for backwash units in which filtrate goes to clearwell	N/A – no backwash recovery units
P _{atm} , Atmospheric pressure [psia]	14.7
Y, Net Expansion Factor [dimensionless]	0.74 (0.588 is lowest from Crane ¹ p. A-22)
d, Lumen diameter [mm]	0.7
L, Potting depth or defect length [mm]	80
κ , Pore shape correction factor [dimensionless]	1.0
σ, surface tension at 5°C [^{dynes} / _{cm}]	75.6
θ, Liquid-membrane contact angle [degrees]	0
Q _p , Maximum design flow rate [^L / _{min}]	438.7 (115.9 gpm)
BP _{max} , Maximum backpressure during the DIT [psi]	3.62 (100.28 inches of water)
P _{Test} , Applied direct integrity test pressure [psi]	20 psi target starting DIT pressure
(Should be \geq minimum test pressure in Table 2)	18.21 psi minimum ending DIT pressure
D _{base} , Baseline diffusive loss expected through fully intact membrane filter unit [psi/min]	0.002 psi/min (0.01 psi over a 5-min DIT)

Table B. Formulae and variables used in the LRV_{ambient} programming

Crane Co. 1988. Flow of fluids through valves, fittings, and pipe. Technical Paper No. 410. Stamford, CT.

Page 10 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

Calculations:

 $\mathsf{P}_{\mathsf{Test}} = 0.193 \bullet \kappa \bullet \sigma \bullet \cos\theta + \mathsf{BP}_{\mathsf{max}}$

(Equation 4.1 EPA Manual)

κ σ θ	1 75.6 0	- dynes/cm degrees	Most conservative value Surface tension of water at 5 deg C Most conservative value
BP _{max}	3.62	psi	Converted from inches of water Constant that includes the defect diameter (i.e. 3 µm
Constant	0.193		and unit conversion factors
Ptest min =	18.21	psi	P _{test} is the minimum starting pressure for a Pressure Decay Test (PDT)
	125.6	kPa	

$$ALCR_{DP} = 170 \bullet Y \bullet \sqrt{\frac{(P_{test} - BP) \bullet (P_{test} + P_{atm})}{(460 + T) \bullet TMP}}$$

(Equation C.4 EPA Manual)

P _{test}	20.0	psi
BP _{max}	3.62	psi
P _{atm}	14.7	psia
Tactual	57.2	٥F
TMP _{actual}	29.00	psi
Y	0.74	

Initial applied test pressure
Converted from inches of water
Actual water temperature Actual TMP before most recent PDT
2000 het enange nem above

24.49 ALCR=

Page 11 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

$$LRV_{DIT} = \log \bullet \left(\frac{Q_{p} \bullet ALCR \bullet P_{atm}}{\Delta P_{test} \bullet V_{sys} \bullet VCF} \right)$$

Qp actual	115.90	gpm
Actual ALCR _{DP}	24.49	-
Patm	14.7	psia
Corrected Operational ΔP_{test}	0.09	psi/min
Vsys	45.71	gallons
VCF	1	-

LRV_{DIT (DP)} =

4.00

$$UCL = \frac{Qp \bullet ALCR \bullet P_{atm}}{10^{LRV} \bullet V_{sys} \bullet VCF}$$

(Equation 4.17 EPA Manual)

Qp	115.90	gpm	
ALCRDP	24.49		
			Atmospheric
Patm	14.7	psia	Pressure
V _{sys}	45.71	gallons	
LRC	4	-	Minimum log removal credit (LRC) value to be accepted
VCF	1	-	Deposition mode configuration standard value

Page 12 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

Appendix C – Product specifications for the Toray HFUG-2020AN module.

Characteristics regarding the membrane modules are provided in Table A. *Table A. Membrane Filter Specifications*

Specification	Value	
Membrane Manufacturer	Toray Industries, Inc.	
Membrane Model Number	HFUG-2020AN	
Challenge test standard (ANSI/NSF 419-YY, ETV, etc.)	ANSI/NSF 419-18	
Challenge test report date	August 15, 2019	
LRV _{C-Test}	5.17-log	
OHA-DWS Challenge Study Verification Information	Date Verified = November 2019	
	LRC = 4.0-log (Giardia/Crypto)	
	Max Flux = 120 GFD @ 20°C	
	Max TMP = 29 psi	
Assumes 2.98 psi maximum backpressure (BP _{max}) =>	Minimum DIT Pressure = 17.44 psi	
	Max Flow = 80.75 gpm @ 20°C	
ANSI/NSF Standard 61 certification (yes/no)	Yes	
Membrane type (<i>e.g.</i> , hollow fiber, etc.)	Hollow fiber	
Number of fibers per module	14,000	
Fiber inside (lumen) diameter	0.7 mm	
Fiber wall thickness	0.2 mm	
Active fiber length (length of fibers not in potting)	1,816 mm	
Potting depth	80 mm	
Membrane classification (<i>e.g.,</i> ultra- or micro-filtration)	Ultrafiltration	
Nominal membrane pore size (<i>e.g.,</i> 0.01 μm, etc.)	150,000 daltons MWCO	
Membrane material (<i>e.g.</i> , PVDF, polysulfone, etc.)	PVDF	
Roughness coefficient	0.75 μm (0.00075 mm)	
Feed side membrane filtration area (ft ²)	969	
Filtration Flow Direction (<i>i.e.</i> , inside-out or outside-in)	Outside-in	
Hydraulic configuration (<i>i.e.</i> , deposition or suspension)	Deposition	
Submerged or Pressurized	Pressurized	

Page 13 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

ANSI/NSF Standard 419-18 Challenge Study Report from the National Sanitation Foundation (NSF) dated August 15, 2019 (NSF job #J-00320592) for the installed Toray HFUG-2020AN membrane modules

	nternational stors Rc. Ann Abor, M. 40015, UDA	TEST REPORT		
1-800.NS	F.MARK (+1-734.788.8010) <u>www.nal.oru</u>			
Send To: 53110 Mr. Yosel Fujita Toray Industries, 1-1-2, Nihonbaek Chuo-ku, Tokyo 103-8666 Japan	inc. Muromadhi	Facility: C33111 Toray Chemical Korea, Inc. 300, Spongaan Z-ro, Gumi GyeongaangDuck of 790350 Korea, Republic of		
Recult	PASS	Report Date: 15-AUG-2019		
Customer Name Tested To Location of Testing Description Test Type Job Number Project Number	Tonay Industries, Inc. NSF/NAISI Standard 499-2018: Public Drinking Wa NSF International, 7499. N. Disboro Rd., Ann Arbor, Utraffitude Membrane Modules, Model Number I Qualification J-000205692 W0526739	ter Equipment Performance - Filtration MI 48105 IFUG-2020MN Table 1 - Challenge Test Sun	unary Results	
Project Manager	r. Sangho Lee	Membrane manufacturer	Toray Industries, Inc.	
Thank you for having your product leated by NSF International. Please contact your Project Manager I you have any questions or cone		Membrane model number	HFUG-2020AN	
		Membrane type	Hollow fiber	
		Membrane classification	Ultrafiltration	
Branch Digitally		Challenge test date	04/01/2019 - 6/27/2019	
Report Authoriza	Kevin Schwier – Group Leader, Engineerin	Challenge particle or organism	MS2 and Bacillus atrophaeus	
		LRV _{c-Test} (log)	5.17	
1242004240	Bab all -	Challenge test feed water temperature (°C)	16.11 - 21.94	
Authority:	Paul Anderson - Director, Engineering Lab	Challenge test flux (gfd)	120.14 - 120.57	
		Challenge test flux normalized to 20°C (gfd) ¹	113.78-132.79	
This report replaces	the report with serial number FI20190718103612 II	Challenge test TMP (psi)	15.19-18.29	
specifications. This	does not change the overall status of the report.	Revised Non-Destructive Performance Test (NDPT) Method	Pressure decay test from 18.85 psi	
FI20100615145247	J-00120592	Revised Quality Control Release Value (QCRV)	0.048 psi/min	
This sport shall not be reproduced, except in the entropy, without the written approved of the authorization is use in HAIT faunt Autohorizations on use well have it interests to podul (www.rifl.org). The maulte noise only to those items leaded, in the condition non-leaded at it		Equation for Air-Liquid Conversion Ratio (ALCR)	$ALCR_{Turbulent} = 170 \times Y \times \sqrt{\frac{(P_{test} - BP)(P_{test} + P_{atm})}{((460 + T) \times TMP)}}$	
		Equation for LRV _{DIT}	$LRV_{DIT} = \log_{10} \left[\frac{Q_P \times ALCR \times P_{atm}}{\Delta P_{test} \times V_{sys} \times VCF} \right]$	
		1		

¹Test flux normalized to 20°C using equation 2.10 from the Membrane Filtration Guidance Manual, USEPA 2005

Page 14 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

A summary of the Toray	HFUG-2020AN	modules is	shown	below in	Table 3.

Descri	ption	
Membrane Make	Toray	
Membrane Model Number	HFUG-2020AN	
ANSI/NSF Standard 61 certification	Certified	
Membrane type	Hollow Fiber	
Membrane classification	Ultrafiltration	
Nominal & max pore size, or molecular weight cutoff rating	150,000 daltons	
Membrane media symmetry	-	
Membrane material	PVDF	
Feed side membrane filtration area (ft ²)	969	
Membrane modu	le specifications	
Module outside diameter (mm)	216	
Length (mm)	2,160	
Module volume (gallons and liters)	Feed side, lumen, end caps: 45.0 Liters, 11.88 gallons	
Potting depth (mm)		
Potting material	Epoxy and/or equivalent	
Module weight – full/dry (kg)	110/67	
Module casing material – if pressurized	PVC and/or equivalent	
Membrane fiber	characteristics	
Number of fibers per module	ibers per module 14,000	
Inside fiber diameter (mm)	0.7	
Fiber wall thickness (mm)	0.2	
Active fiber length (mm)	1,816	
Filtration Flow Direction (i.e., inside-out or outside-in)	Outside – In	
Hydraulic configuration (i.e., deposition or suspension)	Dead End	

ion Flow Direction (i.e., inside-out or outside-in)	Outsid
ulic configuration (i.e., deposition or suspension)	Dead
Operating Limits	
um design filtrate flux at 20°C (gfd)	120
	120

rmal operation
Cl2
10
40°C)
- 40°C)
1
40°C) • 40°C)

FI20190815145247

-

J-00320592

Page 8 of 39

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing (www.nsf.org). The results relate only to those items tested, in the condition received at the laboratory.

Page 15 of 15 Young Life (PWS #01246) Conditional Approval PR #75-2021 – Membrane Module Replacement with 8 Toray HFUG-2020AN Modules July 16, 2021

Table 21 - Membrane Integ	grity Summary Information
Revised NDPT m	ethod and QCRV
NDPT method (e.g., pressure decay, etc.)	10-minute pressure decay from 18.85 psi
QCRV (include units)	0.048 psi/min
Equations for use in determining	g LRV _{DIT} , ALCR, and DIT pressures
LRV _{prr} equation	$LRV_{DIT} = \log_{10} \left[\frac{Q_P \times ALCR \times P_{atm}}{\Delta P_{test} \times V_{sys} \times VCF} \right]$
ALCR equation	$ALCR_{Turbulent} = 170 \times Y \times \sqrt{\frac{(P_{test} - BP)(P_{test} + P_{atm})}{((460 + T) \times TMP)}}$
DIT pressure equation	$P_{test} = (0.193 \times K \times \sigma \times cos\theta) + BP_{max}$
Constants for use in determining	g LRV _{DIT} , ALCR, and DIT pressures
Volume of pressurized air in module during DIT (liters)	34.0
Volumetric concentration factor (VCF, dimensionless)	1
Net expansion factor (Y)	0.588
Lumen diameter (d, mm)	1.1 outside, 0.7 inside
Potting depth or defect length (I, mm)	
Pore shape correction factor (K, dimensionless)	1
Liquid membrane contact angle (e, degrees)	0°
Maximum design flow rate per module (L/min)	305.67

Note: The "revised" nondestructive performance test (NDPT) method and quality control release value (QCRV) are the NDPT and QCRV established as a result of the challenge study that will demonstrate meeting the 3 μ resolution requirement (with calculations and variables used) and that the modules will meet the removal efficiency demonstrated by the challenge test (LRV_{C-Test}). These may not have changed from what the manufacturer was already using, however, the term "revised" is used to denote the NDPT and QCRV reviewed/revised as a result of the challenge test.

Toray HFUG-2020AN Hollow Fiber PVDF Ultrafiltration Module

Outside-in flow operated in dead-end deposition mode

Molecular weight cutoff = 150,000 daltons

14,000 PVDF hollow fibers per module

Fiber interior (lumen) diameter = 0.7 mm

Active fiber length = 1,816 mm

Filter area = 969 ft²

Maximum flux = $120 \text{ ft}^2/\text{day}$

Maximum flow = 80.75 gpm/module @ 20°C (challenge test flow)

Maximum TMP = 29 psi

Minimum end-of-test direct integrity test pressure = 17.44 psi (assumes 2.98 psi BP_{max})

